3.650 \(\int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=67 \[ \frac{2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*
Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0953826, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {3858, 2663, 2661} \[ \frac{2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*
Sec[c + d*x]])

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx &=\frac{\left (\sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{\sqrt{a+b \sec (c+d x)}}\\ &=\frac{\left (\sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \sec (c+d x)}}\\ &=\frac{2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0670675, size = 67, normalized size = 1. \[ \frac{2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*
Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.244, size = 171, normalized size = 2.6 \begin{align*} 2\,{\frac{\cos \left ( dx+c \right ) \left ( \sin \left ( dx+c \right ) \right ) ^{2}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}{d \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( b+a\cos \left ( dx+c \right ) \right ) }{\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }\sqrt{{\frac{a-b}{a+b}}}},\sqrt{-{\frac{a+b}{a-b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }}}\sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( \cos \left ( dx+c \right ) +1 \right ) }}}{\frac{1}{\sqrt{{\frac{a-b}{a+b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/d/((a-b)/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x
+c)*sin(d*x+c)^2*(1/cos(d*x+c))^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)/(-1+cos(d*x+c))/(b+a*cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\sec \left (d x + c\right )}}{\sqrt{b \sec \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{\sqrt{a + b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x)